Learning Network of Multivariate Hawkes Processes: A Time Series Approach

نویسندگان

  • Jalal Etesami
  • Negar Kiyavash
  • Kun Zhang
  • Kushagra Singhal
چکیده

Learning the influence structure of multiple time series data is of great interest to many disciplines. This paper studies the problem of recovering the causal structure in network of multivariate linear Hawkes processes. In such processes, the occurrence of an event in one process affects the probability of occurrence of new events in some other processes. Thus, a natural notion of causality exists between such processes captured by the support of the excitation matrix. We show that the resulting causal influence network is equivalent to the Directed Information graph (DIG) of the processes, which encodes the causal factorization of the joint distribution of the processes. Furthermore, we present an algorithm for learning the support of excitation matrix of a class of multivariate Hawkes processes with exponential exciting functions (or equivalently the DIG). The performance of the algorithm is evaluated on synthesized multivariate Hawkes networks as well as a stock market and MemeTracker real-world dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Inference for Latent Hawkes Processes

Hawkes processes are multivariate point processes that model excitatory interactions among vertices in a network. Each vertex emits a sequence of discrete events: points in time with associated content, or marks. Unlike Poisson processes, Hawkes processes allow events on one vertex to influence the subsequent rate of events on downstream vertices. With this property, they are ideally suited to ...

متن کامل

Time series forecasting of Bitcoin price based on ARIMA and machine learning approaches

Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...

متن کامل

Learning Curve Consideration in Makespan Computation Using Artificial Neural Network Approach

This paper presents an alternative method using artificial neural network (ANN) to develop a scheduling scheme which is used to determine the makespan or cycle time of a group of jobs going through a series of stages or workstations. The common conventional method uses mathematical programming techniques and presented in Gantt charts forms. The contribution of this paper is in three fold. First...

متن کامل

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

Modelling Reciprocating Relationships with Hawkes Processes

We present a Bayesian nonparametric model that discovers implicit social structure from interaction time-series data. Social groups are often formed implicitly, through actions among members of groups. Yet many models of social networks use explicitly declared relationships to infer social structure. We consider a particular class of Hawkes processes, a doubly stochastic point process, that is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1603.04319  شماره 

صفحات  -

تاریخ انتشار 2016